리만의 제타함수 (6) : 자연상수

이 글은 다음 글들에 이어지는 시리즈의 여섯번째 글이다.

글 싣는 순서
리만의 제타함수 (1)
리만의 제타함수 (2) : 수의 체계
리만의 제타함수 (3) : 실수란 무엇인가
리만의 제타함수 (4) : 지수법칙
리만의 제타함수 (5) : 지수의 실수로의 확장

이제부터 두번에 걸쳐, 시리즈의 중반 특집으로, 박사가 사랑한 수식-오일러의 공식에 대하여 설명한다. 그리하여 오늘은 자연상수 숫자 e를 설명한다. 짧은 배경설명뒤에 동영상 강의가 준비되어 있다. 그러나, 아뿔싸! 첫방송이다 보니, 얼굴에 기름이 좔좔 흐르고 있는 상황을 파악하지 못하고 말았다. 왜 방송할 때, 사람들이 화장을 하나 했다. 처음에는 다 그럴수 있는 것이라 너그럽게 보아주시면 되겠다. 중요한 것은 이곳이 수학의 담론을 생산하는 수학 블로그라는 것이다!

자연상수는 수열의 극한을 통하여 정의된다. 그리하여 그 수열을 먼저 이해하는 것이 필수적이다. 수열에 친숙해지기 위하여 좀더 친숙한 상황을 하나 생각해 보자.

비록 한국에서는 경제학을 문과로 분류하는 다소 이해할 수 없는 상황이 벌어지고 있지만, 자연상수를 공부하기엔, 돈과 이자 얘기가 좋다. 복리로 주어지는 예금상품이 있다고 하자. 넣어둔 돈이 a이고, 단위기간 동안의 이자율이 r이라고 하면, 그 단위기간이 지났을 때, 돈은 a(1+r) 이 된다. 만약에 그 돈을 계속 넣어둔다면, 약속된 단위기간이 지날 때마다, 통장의 예금은

[math]a(1+r), a(1+r)^2, a(1+r)^3, \cdots, [/math]

로 늘어나게 된다.

이제 자연상수를 공부하기 위하여, 넣어둔 돈은 1, 단위기간은 1년, 이자율은 100%라고 하자.(말하고 보니, 이데아의 세계...) 1년 뒤에는 돈이 2가 될 것이다. 그런데 이 상황을 약간 변형하여 이렇게 하면 어떨까. 단위기간은 1년의 절반인 6개월로 하는 대신, 이자를 6개월마다 50% 복리로 받는 것이다. 그렇다면 1년 후에, 통장에 들어 있게 되는 돈은 다음과 같다.

[math](1+\frac{1}{2})^2=2.25 [/math]

수익이 더 높아졌다!

만약에 단위기간을 1년의 3분의 1인, 4개월로 하고, 4개월마다 이자를 33.33% 씩 받는다면, 1년 후에 받게 되는 돈은 이렇게 될 것이다.

[math](1+\frac{1}{3})^3=2.370370 \cdots [/math]

수익이 더 높아졌다. 이자를 이런 식으로 받으면 수익은 언제나 더 높아지는 것일까? 즉, 만약 단위기간을 1년의 n분의 1로 하고, 이자를 n분의 1 비율의 복리로 받게 된다면, 1년후, 이 돈은 얼마가 되는 것일까. 이렇게 될 것이다.

[math](1+\frac{1}{n})^n[/math]

이제 오늘 내가 할 것은, 바로 이 수열에 대한 것이다.

첫번째, 이자율은 아무리 잘게 쪼개도 200%는 안 된다.
두번째, 그렇지만 이자를 잘게 쪼개서 받을수록 수익률은 더 높다.

이 두가지 사실이 수학적으로 의미하는 사실은,

[math]\{(1+\frac{1}{n})^n\}[/math]

이라는 수열은, 유계인 단조증가 수열이라는 것이다. 따라서 지난번 "리만의 제타함수 (5) : 지수의 실수로의 확장"에서 언급한, 실수의 완비성에 의해, 이 수열은 수렴하게 된다. 이 때, 수열의 극한값을 e, 자연상수라고 부르는 것이다.

지루할 수 있으니, 10분가량 진행되는 동영상을 셋으로 나누었다.

1. 개요 및 수열 [math](1+\frac{1}{n})^n [/math].

2. [math](1+\frac{1}{n})^n < 3[/math] 의 증명

3. "[math](1+\frac{1}{n})^n [/math]는 증가수열이다" 및 자연상수의 정의.

미적분학의 기초가 되는 숫자 e를 정의하는 과정이니, 미적분학을 피한 증명을 사용했다. 산술-기하 평균 부등식이 필요하다.

Tags:

8 Responses to “리만의 제타함수 (6) : 자연상수”

  1. 나비 says:

    강의 잘 봤습니다!
    찍고 편집하느라 고생 많으셨겠어요.
    마침 어제밤에 '박사가 사랑한 수식'을 봤는데, 참 좋더군요.
    화장 같은 건 걱정 마시고, 다음 편 빨랑 보여주세요^^

  2. pythagoras says:

    나비님/ 해보니 생각보다 힘들더라고요. 화질도 원래보다 많이 떨어지고 말이죠. 당분간은 좀 헤맬듯 해요.

  3. hoon says:

    수고하셨습니다. 역시 눈으로 보니까 느낌이 새롭네요.
    목소리는 약간 졸리운 듯 ^^
    다음 강의 기대하고 있을께요~~

  4. 피글링 says:

    수학의 걸음마를 갓 뗀 고딩도 이해할 수 있게 짚어가며 써주셔서 기쁘게 읽었습니다. 다음 강의를 목이 빠져라 기다리고 있습니다^^

  5. pythagoras says:

    피글링/ 좋은 반응입니다. 목이 빠질까 걱정되어, 다음 편을 쓰고 있습니다. 친구들 더 데려오세요.

  6. 뜬금... says:

    님 글을 통해 좀 호전적인 분이 아닐까, 혹은 호탕한 분이 아닐까란 생각을 가지고 있었는데... 목소리가 음~청 달콤하십니다.ㅎㅎ

  7. oh moon gyu says:

    영상이 재생이 안되네여 ㅜ 비공개 영상이라고 뜨는,

  8. 승희 says:

    음.. 저도 비공개영상으로 나오네요.